Name:			

Definitions

A number is even if it can be written in the form 2k for some integer k. A number is odd if it can be written in the form 2k + 1 for some integer k.

Given $n, m \in \mathbb{Z}$, we say that n divides m, written $n \mid m$, if there exists $k \in \mathbb{Z}$ such that m = nk. If $n \mid m$, we may also say m is divisible by n or n is a factor of m. If n does not divide m, we write $n \nmid m$.

Give a proof for each statement below.

1. The sum of any three consecutive integers is divisible by three.

Let n be an arbitrary integer. Then n, n+1, and n+2 are three consecutive integers. Their sum is n+(n+1)+(n+2)=3n+3=3(n+1). Since n+1 is an integer, we see that the sum can be written as the product of 3 and an integer and thus the sum is divisible by 3.

Slick solution: Let n be an arbitrary integer. Then n-1, n, and n+1 are three consecutive integers. Their sum is (n-1)+n+(n+1)=3n. Since n is an integer, we see the sum is divisible by 3.

2. If $a \mid n$, then $a \mid mn$.

Since $a \mid n$, we know n = ak for some integer k. Therefore mn = m(ak) = a(km). Since km is an integer, we see mn can be written as the product of a and some integer. We conclude that $a \mid mn$.

Doing math out loud is vulnerable, so remember to be kind and supportive to each other.

3. If $c, a, r \in \mathbb{R}$ such that $c \neq 0$ and $r \neq a/c$, then there exists a unique $x \in \mathbb{R}$ such that (ax + 1)/(cx) = r.

Existence: Since $r \neq a/c$, $y = \frac{1}{cr - a}$ is a real number. Then y satisfies the equation (ax + 1)/(cx) = r, as shown below.

$$\frac{ay+1}{cy} = \frac{a(\frac{1}{cr-a})+1}{c(\frac{1}{cr-a})}$$

$$= \frac{a+cr-a}{c}$$
(1)

$$=\frac{a+cr-a}{c}\tag{2}$$

$$=r$$
 (3)

Note that equations (1) and (2) are well-defined because $c \neq 0$. We conclude that there exists a real number satisfying (ax + 1)/(cx) = r.

Uniqueness: Suppose real numbers y and z both satisfy the equation (ax +1)/(cx) = r. Then

$$\frac{ay+1}{cy} = \frac{az+1}{cz} \tag{4}$$

$$acyz + cz = acyz + cy (5)$$

$$cz = cy (6)$$

$$z = y \tag{7}$$

where the cancellation from line (3) to line (4) is valid because $c \neq 0$. Thus the real number satisfying (ax + 1)/(cx) = r is unique.

4. If ab divides n, then a divides n and b divides n.

If ab divides n, we know there exists and integer k such that (ab)k = n. To see that a divides n, notice that n = a(bk) where bk is an integer, so a is a factor of n. Similarly, to see that b divides n, notice that n = b(ak) where ak is an integer, so b is a factor of n.

5. If n is odd, then 8 divides $n^2 - 1$.

Lemma 1. The product of consecutive integers is even.

Proof. Let k, k+1 be arbitrary consecutive integers.

Case 1: If k is even, then k = 2j for some integer j. Then the product of k and k + 1 is

$$k(k+1) = (2j)(2j+1)$$

= 4j² + 2j
= 2(2j² + j)

where $2j^2 + j$ is an integer. We see that the product is even.

Case 2: If k is odd, then k = 2j + 1 for some integer j. Then the product of k and k + 1 is

$$k(k+1) = (2j+1)(2j+2)$$
$$= 4j^2 + 6j + 2$$
$$= 2(2j^2 + 3j + 1)$$

where $2j^2 + 3j + 1$ is an integer. We see that the product is even.

Proof of main statement. Since n is odd, there exists and integer k such that n = 2k + 1. Thus

$$n^2 - 1 = (2k+1)^2 - 1 = 4k^2 + 4k = 4k(k+1).$$

Notice that k(k+1) is the product of consecutive integers and must be even by Lemma 1, so there exists integer j such that k(k+1) = 2j. Finally

$$n^2 - 1 = 4 \cdot 2j = 8j$$

which proves that $n^2 - 1$ is divisible by 8.

6. If a divides b and b divides c, then $a \mid c$.

If a divides b and b divides c, then there exist integers n and m such that an = b and bm = c. Then c = bm = (an)m = a(nm) where mn is an integer, which shows that $a \mid c$.

7. For all $n \in \mathbb{Z}$, $3n^2 + n + 14$ is even.

(If n is even) If n is even then n = 2k for some integer k. Then

$$3n^{2} + n + 14 = 3(2k)^{2} + 2k + 14$$
$$= 12k^{2} + 2k + 14$$
$$= 2(6k^{2} + k + 7)$$

where $6k^2 + k + 7$ is an integer. We conclude that $3n^2 + n + 14$ is even.

(If n is odd) If n is odd then n = 2k + 1 for some integer k. Then

$$3n^{2} + n + 14 = 3(2k + 1)^{2} + (2k + 1) + 14$$
$$= 12k^{2} + 14k + 8$$
$$= 2(6k^{2} + 7k + 4)$$

where $6k^2 + 7k + 4$ is an integer. We conclude that $3n^2 + n + 14$ is even.